
Optimizing Mixed-Signal Routing Using Deep
Reinforcement Learning

Avikam Chauhan∗
avikam.chauhan@berkeley.edu
University of California, Berkeley

Berkeley, USA

Ashwin Rammohan∗
ashwin1501@berkeley.edu

University of California, Berkeley
Berkeley, USA

Abstract
Modern systems-on-a-chip (SoCs) typically contain several
important mixed-signal circuits, such as analog-to-digital
converters (ADCs), digital-to-analog converters (DACs), and
phase-locked-loops (PLLs), that rely on close integration of
analog and digital circuits. Noise coupling of digital signals
to analog signals can signi�cantly degrade the performance
of these circuits, and thus the generation of optimal signal
routes in layout is an important step in mixed-signal design
automation.

We present a reinforcement learning (RL) based framework
to generate optimized analog routes that minimize parasitic
noise coupling to nearby digital signals, and evaluate its
performance on a variety of circuit topologies, from simple
2D and 3D examples to a modi�ed layout of a commonly
used circuit — the StrongARM comparator.

Keywords: analog mixed-signal (AMS) circuits, circuit rout-
ing, electronic design automation (EDA), computer-aided
design (CAD), machine learning (ML), deep reinforcement
learning (RL)

1 Introduction
Mixed-signal chip blocks, such as analog-to-digital convert-
ers (ADCs), digital-to-analog converters (DACs), and phase-
locked-loops (PLLs) rely on close integration of analog and
digital circuits. However, as technology nodes shrink and
supply voltages are reduced, noise-coupling between analog
and digital circuits becomes a critical challenge to solve for
mixed-signal SoCs. Digital signal routes swing from rail to
rail at high frequencies, and these large signal swings can in-
terfere (through parasitic capacitive coupling) with sensitive
analog routes carrying much smaller signal swings. Noise
coupling can degrade the signal-to-noise-and-distortion ra-
tio (SNDR) of mixed-signal circuits, forcing them to burn

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
© 2023 Copyright held by the owner/author(s).

Figure 1. A layout of a 12-bit SAR ADC. Key blocks are
labeled. [4]

more power or accept poorer performance. Traditionally,
noise coupling is solved using physical isolation techniques
(such as guard rings and shielding wires) between analog
and digital blocks. However, these techniques consume sig-
ni�cant area and moreover, shielding cannot practically be
applied to every route for critical analog signals.

Figure 1 shows an example of a mixed-signal circuit, a 12-bit
successive-approximation-register (SAR) analog-to-digital
converter (ADC) that is responsible for quantizing analog
signals into 12-bit digital values. The ADC consists of blocks
like the comparator and the capacitive digital-to-analog con-
verter (CAP-DAC) that are sensitive to noise as well as blocks
like the SAR logic that have hard-switching rail-to-rail digital
signals. Isolating the sensitive blocks from the noise gener-
ated by the digital circuits is crucial to maintaining the high
precision of the ADC.

We aim to develop an automated, reinforcement learn-
ing based tool to generate optimized routes that mini-
mize noise coupling to nearby digital signal wires.

1.1 The Motivation for Machine Learning
Manual mixed-signal layout is a repetitive and iterative pro-
cess that may not lead to an optimal result. Humans are not
able to predict or visualize the e�ects of electromagnetic

1

interactions between various wires and blocks, so they rely
on an iterative cycle of using EDA tools to evaluate their
layouts and then modify their routing as needed to improve
performance.

We believe machine learning is an apt solution for such a
problem because the design space for routing grows expo-
nentially with the size of the circuit. We can train machine
learning models to quickly iterate over di�erent routing
schemes and learn to place optimized routes that reduce
noise coupling and other undesired e�ects. We propose that
ML models can learn an optimal result by minimizing a lin-
ear combination of various cost parameters (e.g. parasitic
wire capacitances, total wire length, total area, etc.), where
the weights for each component could be user-de�ned.

1.2 The Motivation for Reinforcement Learning
Reinforcement learning is especially useful in these types
of problems because there is a lack of su�cient datasets to
train large-scale ML models (like neural networks, among
others). The advantage of reinforcement learning is that we
only need to de�ne a few parameters: a state representation,
state dynamics (how the agent interacts with the environ-
ment), and a reward function. Once these are de�ned, we
can generate many arbitrary examples and run the RL agent
on these cases, and train it to perform actions that optimize
the reward.

We propose the concept of using reinforcement learning
with human feedback (RLHF) in this application, to further
solve the issue of limited training data. With RLHF, the re-
ward function is a combination of the traditional RL reward
function, along with a human-provided feedback (a score
that rates the quality of the agent’s output). This means that
we can e�ectively learn better reward functions than just
simply designing our own function manually, and we can
have experts rank the agent’s outputs for the same problem
(but using di�erent random seeds for the initial placement).
As a result, the agent could learn to imitate behaviors that
are more intuitive to humans (like clean layouts, proper
alignment, etc.) which cannot be accurately described in a
traditional reward function.

2 Related Work
Much of the prior work in mixed-signal design automation
has focused on design and layout automation of the actual
analog circuits, which is a massively time-consuming and
iterative process for human designers. Despite this being
an important problem to solve, the time and e�ort taken to
perfect analog design automation will have gone to waste if
the top-level layout and routing of digital and analog blocks
is done poorly.

However, there has been some prior work on optimizing
analog routing. Zhu, et al. [6] at UT Austin developed a

nonlinear-programming-based global placement algorithm
followed up by a wirelength-based compaction. Chen, at al.
at NVIDIA also developed a reinforcement learning based
routing scheme for analog/mixed-signal circuits. However,
their routing scheme is optimized speci�cally for symmetry
and matching of paths which ensures matched loads and
parasitics in layout across pairs of signals [1]. Within the
topic of optimizing noise-coupling, Lin et al. from National
Chung Cheng University in Taiwan have developed a deter-
ministic scheme to generate optimized mixed-signal layouts
for minimal noise coupling [2]. Their approach uses slicing
trees to organize analog and digital signals optimally on the
chip.

We aim to synthesize the ideas in these approaches by lever-
aging reinforcement learning to place analog routes that
optimize for noise coupling speci�cally.

To our knowledge, this work is the �rst of its kind, with
the goal of using deep reinforcement learning to optimize
analog mixed-signal routing with respect to capacitive noise
coupling.

3 Methodology
In this section, we detail the speci�c implementation we
designed and developed to utilize reinforcement learning
to solve the mixed-signal routing problem. We describe the
problem formulation (including the state space representa-
tion, state transition dynamics, and the reward function), as
well as the model architecture and training process.

3.1 Deep Q Network (DQN) Algorithm
We used the Deep Q Network (DQN) algorithm for our re-
inforcement learning agent. DQNs are designed to learn
the &-value function for state-action pairs: & (B,0). Then,
this learned function is used by the agent to select the ac-
tions that maximizes the &-value at each timestep C : 0C =
argmax0 & (BC ,0).

3.2 Markov Decision Process Formulation
We have formulated the problem as a Markov Decision Pro-
cess (MDP), which is the standard format for problems being
solved with reinforcement learning algorithms. An MDP is
discrete-time stochastic control process, where an agent can
interact with its environment by sampling state conditions,
performing actions, and receiving reward signals at each
timestep.

3.2.1 State Space.
The state space we chose is as follows:

• Current Grid: a 3D grid of shape ! ⇥, ⇥� which en-
codes out-of-bounds regions (consisting of the circuit
block placements and previously routed analog wires)
with ones at the corresponding coordinates, and zeros
everywhere else

2

• Wire Grid: a 3D grid of shape ! ⇥, ⇥ � which en-
codes digital "aggressor" wires (also considered out-
of-bounds regions) with ones at the corresponding
coordinates, and zeros everywhere else

• Current Position Grid: a 3D grid of shape ! ⇥, ⇥

� which encodes the agent’s current position in the
layout with a one, and zeros everywhere else

• Target Position Grid: a 3D grid of shape ! ⇥, ⇥ �
which encodes the target position for the current route
in the layout with a one, and zeros everywhere else

3.2.2 Action Space.
In this 3D space, the agent can take the following actions:

• Move 1 step forward
• Move 1 step backward
• Move 1 step left
• Move 1 step right
• Move 1 step up (via to the next metal layer)
• Move 1 step down (via to the previous metal layer)

3.2.3 Reward Function.
At each timestep, the agent is provided a reward for the
action it takes. The reward function is de�ned as follows:

• �1 penalty for each timestep: this incentivizes the
agent to prioritize shorter paths and complete the
routes in fewer timesteps

• +8 reward for every unit decrease in the Manhattan
distance to the current target: this incentivizes the
agent to move towards the target position, on average

• �20 penalty for taking a via: this disincentivizes the
agent from taking vias, unless they are absolutely nec-
essary or reduce coupling capacitance signi�cantly

• �5⇥⇠int penalty for intermediate coupling capacitance:
this disincentivizes routes that are close and parallel
to existing wires, and is calculated at each timestep —
only if intermediate coupling capacitance calculations
are enabled

• +75 reward every time the agent reaches a target posi-
tion: this incentivizes the agent to �nish routes

• +200 reward when the agent successfully completes
all routes: this provides the agent a substantial reward
if all the routes have been placed

• �5 ⇥⇠total penalty for total coupling capacitance: this
disincentivizes routes that are close and parallel to ex-
isting wires, but is only calculated once at the end of
each rollout — only if intermediate coupling capaci-
tance calculations are disabled

• �100 penalty if the agent goes out of bounds, inter-
sects with other wires/blocks, or takes more than 200
timesteps to complete routing: these are all failed roll-
outs, and we penalize the agent accordingly

We chose these reward values through manual hyperparam-
eter tuning experiments, where we evaluated the tradeo�
between di�erent goals (e.g. minimizing routing distance

and minimizing coupling capacitance). Ultimately, we chose
values that allowed the agent to successfully reach its targets
successfully while still weighing coupling capacitance, via
penalties, etc.

3.3 Coupling Capacitance Calculations
We implemented 2 di�erent methods to calculate the cou-
pling capacitance: one that can be used to calculate the in-
termediate coupling capacitance at each timestep (done in-
dividually on the route that is currently being placed), and
one that can be used to calculate the total coupling capaci-
tance after the rollout is complete (done once all routes are
successfuly placed).

Ultimately, we chose to use the intermediate coupling capaci-
tance calculationmethod (as the agent produces better routes
when trained with this reward function), but we demonstrate
the di�erence in performance when using the total coupling
capacitance calculation method on a test circuit in the next
section.

3.3.1 Intermediate Coupling Capacitance Calculation.
The intermediate coupling capacitance is calculated by com-
paring the previous (G,~, I) coordinate with the current
(G,~, I) coordinate. After determining if the segment lies
in the G (or ~) axis, we then loop through the row (or col-
umn) corresponding to the current coordinate, and add up
the cells with ones (i.e. the ones that are occupied by wires),
weighted inversely by their distance. For the sake of simplic-
ity, we ignore the coupling capacitance between segments
in the I axis, since the RL agent rarely takes vias (if at all), so
the e�ects of coupling in this axis are relatively insigni�cant.

More formally, the coupling capacitance calculation for hori-
zontal segments is:

⇠int_x =
’

G2 [0,!], G < curr_x

wire_grid[G, curr_y, curr_z]
|G � curr_x|

and the calculation for vertical segments is:

⇠int_y =
’

~2 [0,,], ~ < curr_y

wire_grid[curr_x,~, curr_z]
|~ � curr_y|

These penalties are accumulated by the agent over the course
of each rollout.

3.3.2 Total Coupling Capacitance Calculation.
The total coupling capacitance is calculated with a clever
dot-product technique that determines the overlap between
wires within the same metal layer, and across di�erent metal
layers.

Essentially, we take the dot-products of all combinations of
rows within a layer, and dot-products of all combinations of
columnswithin a layer to determine the coupling capacitance

3

for wires within the same metal layer. Then, we take the dot-
produts of all combinations of layers within the design, and
that allows us to determine the coupling capacitance for
wires on separate metal layers. These intermediate results
are then combined using a weighted sum to determine the
total coupling capacitance.

More formally, the coupling capacitance calculation for hori-
zontal segments is:

⇠total_x =
’

G12 [0,!], G22 [0,!], G1<G2

hrowG1 , rowG2i

|G1 � G2 |

and the calculation for vertical segments is:

⇠total_y =
’

~12 [0,,], ~22 [0,,], ~1<~2

hcol~1 , col~2i
|~1 � ~2 |

and the calculation for cross-layer capacitance is:

⇠total_z =
’

I12 [0,�], I22 [0,�], I1<I2

hlayerI1 , layerI2i
|I1 � I2 |

The total coupling capacitance is calculated as follows:

⇠total = U1 (⇠total_x +⇠total_y) + U2 ⇠total_z

where U1 and U2 can be chosen to re�ect the scaling factor
between the wire pitch on the same metal layer versus the
pitch and dielectric constant between successive metal layers
(as de�ned by the technology node speci�cations). These
scale factors can also be used to prioritize the reduction of
coupling capacitance either within layers or across di�erent
layers. For the purpose of our experiments, we applied equal
weights for U1 and U2.

3.4 Model Architecture and Training
Our RL agent can be trained to place routes for a variety of
circuits, ranging from simple to complex. As expected, the
training time increases with complexity of the circuit, given
the number and length of routes, and the larger physical
design space for the RL agent to explore.

3.4.1 Model Architecture.
The DQNmodel is a neural network that is trained to predict
&-values for state-action pairs: & (B,0). We de�ne the &-net
model architecture as a sequential network:

1. Linear layer: (! ⇥, ⇥ � ⇥ 4) ! 64
2. ReLU activation layer
3. Linear layer: 64 ! 64
4. ReLU activation layer
5. Linear layer: 64 ! 6

Figure 2. The starting state of the Simple 2D Grid circuit.
Starting positions are labeled with a S and target positions
are labeled with a T.

This architecture is duplicated for the &-net target network,
which prevents over�tting to local optima and reduces noise
in gradients during the training process.

3.4.2 Optimizing the Model Training Process.
To improve the model performance, we performed manual
hyperparameter sweeps over variables such as the total num-
ber of training timesteps, learning rate, reward discount fac-
tor, exploration factor, etc.

We also implemented a variety of tweaks to improve the
model training process (both in terms of training time and
overall performance). This included randomizing the order
of routes (start-target pairs) after each rollout, to reduce
over�tting on individual routes and instead learn to optimize
all routes evenly. We also experimented with cycling through
all the routes and taking one step for each route in parallel,
instead of fully completing one route before moving onto
the next one, but this was largely unsuccessful.

4 Experiments and Results
4.1 Simple 2D Grid Experiment
The �rst experiment we conducted to test the performance
of the RL agent was a simple, single-layer circuit, consisting
of 2 starts and 2 targets. The circuit had 2 pre-placed circuit
blocks and 1 digital wire that should be avoided to reduce
coupling capacitance. Figure 2 depicts the initial state of the
Simple 2D Grid circuit.

After training the RL agent on this circuit, we plot the av-
erage reward earned by the agent in each episode in Figure
A1. We also plot the &-net model loss throughout the train-
ing process in Figure A2. Finally, we perform an evaluation
rollout to visualize the routes drawn by the agent, depicted
in Figure 3:

Although the routes drawn by the RL agent successfully
connect the respective start and target pairs, the route on

4

Figure 3. The �nal state of the Simple 2D Grid circuit. Routes
(shown in red) are successfully drawn for all pairs of starts
and targets.

Figure 4. The starting state of the Expanded 2D Grid circuit.
Starting positions are labeled with a S and target positions
are labeled with a T.

the right is suboptimal because it is immediately adjacent
to the digital wire (shown in yellow). Nevertheless, the left
route is optimized because it is as far as it can possibly be
from the digital wire.

4.2 Expanded 2D Grid Experiment
The second experiment we conducted was based o� of the
Simple 2D Grid circuit, but this time with more starts and tar-
gets. Essentially, we tiled the Simple 2D Grid circuit twice on
a larger physical workspace to see how the RL agent would
perform on a larger-scale circuit (with a bigger observation
space and more freedom to draw complex routes). This is
also relevant for real-world routing problems because there
are often distinct circuit blocks that need many short wires
to be routed between nodes, while having fewer long wires
across the entire layout (which are also less likely to be ana-
log signals by design). Figure 4 depicts the initial state of the
Expanded 2D Grid circuit.

Figure 5. The �nal state of the Expanded 2D Grid circuit.
Routes (shown in red) are successfully drawn for all pairs of
starts and targets.

After training the RL agent on this circuit, we plot the av-
erage reward earned by the agent in each episode in Figure
A3. We also plot the &-net model loss throughout the train-
ing process in Figure A4. Finally, we perform an evaluation
rollout to visualize the routes drawn by the agent, depicted
in Figure 5.

Similar to the Simple 2D Grid experiment, the routes on the
right of each “sub-circuit” are suboptimal because they are
immediately adjacent to the digital wires (shown in yellow).
Nevertheless, the left routes are optimized because they are
as far as they can possibly be from the digital wire.

4.3 Expanded 3D Grid Experiment
We then extended the Expanded 2D Grid circuit by adding
2 new metal layers, one above and one below the existing
layer from the previous design. This allows the RL agent to
have more �exibility in the potential paths it can take, as it
can use vias to move up and down between metal layers and
potentially optimize the coupling capacitance even further.

To compare a scenario where the RL agent has the option
to utilize vias (but is not required to, because the starts and
targets are all in the same metal layer) with a scenario where
the RL agent is required to take a via (because the starts and
targets are not in the same metal layer), we create 2 versions
of the Expanded 3D Grid circuit. This allows us to evaluate
how the RL agent performs when it has this larger action
space and determine whether it can optimize the locations
where vias are taken in situations where it is necessary to
move between metal layers.

4.3.1 Coplanar Starts and Targets.
Figure 6 depicts the initial state of the Expanded 3D Grid
circuit with coplanar starts and targets.

After training the RL agent on this circuit, we plot the av-
erage reward earned by the agent in each episode in Figure

5

Figure 6. The starting state of the Expanded 3D Grid circuit
with coplanar starts and targets. Starting positions are la-
beled with a S and target positions are labeled with a T.

Figure 7. The �nal state of the Expanded 3D Grid circuit
with coplanar starts and targets. Routes (shown in red) are
successfully drawn for all pairs of starts and targets.

A5. We also plot the &-net model loss throughout the train-
ing process in Figure A6. Finally, we perform an evaluation
rollout to visualize the routes drawn by the agent, depicted
in Figure 7.

The routes drawn by the RL agent successfully connect the
respective start and target pairs, and most of them are opti-
mally drawn because they generally avoid being immediately
adjacent to the digital wires (shown in neon green) whenever
possible, while also optimizing for the wire length of each
route. The only exception to this is the wire on the right
side of the left “sub-circuit”, which is placed immediately
adjacent to the digital wire.

4.3.2 Non-coplanar Starts and Targets.
Figure 8 depicts the initial state of the Expanded 3D Grid
circuit with non-coplanar starts and targets.

After training the RL agent on this circuit, we plot the av-
erage reward earned by the agent in each episode in Figure

Figure 8. The starting state of the Expanded 3D Grid circuit
with non-coplanar starts and targets. Starting positions are
labeled with a S and target positions are labeled with a T.

Figure 9. The �nal state of the Expanded 3D Grid circuit with
non-coplanar starts and targets. Routes (shown in red) are
successfully drawn for all pairs of starts and targets. Dotted
lines correspond to wires on the topmost metal layer (which
also contains the target positions).

A7. We also plot the &-net model loss throughout the train-
ing process in Figure A8. Finally, we perform an evaluation
rollout to visualize the routes drawn by the agent, depicted
in Figure 9.

The routes drawn by the RL agent successfully connect the
respective start and target pairs, and are all optimally drawn
because they are far from the digital wires (shown in neon
green), while also optimizing for the wire length of each
route.

4.4 Evaluating Intermediate Coupling Capacitance
vs. Total Coupling Capacitance Calculation

Before conducting a variety of experiments on di�erent cir-
cuits, we compared the performance of our RL agent when
calculating the intermediate coupling capacitance at each
timestep versus calculating the total coupling capacitance at
the end of each rollout.

6

Figure 10. The routes (shown in red) placed by the RL agent
when the total coupling capacitance is calculated at the end
of each episode.

In principle, we expected the intermediate coupling capaci-
tance calculations to provide better results, since the agent
is penalized for coupling capacitance at a much higher fre-
quency, and thus should learn to better optimize for this
cost. However, this method is more computationally inten-
sive than the total coupling capacitance calculation, which
is why we considered testing both methods. Although calcu-
lating the total coupling capacitance at the end violates the
Markovian properties of the reward function, the episode
lengths are relatively short, and thus we expected that it
would not reduce the agent’s �nal performance signi�cantly.

We tested the di�erent coupling capacitance calculations on
the Expanded 3D Grid circuit with coplanar starts and targets
(as described in section 4.3.1). Figure A9 depicts the average
reward earned by the agent using each of the coupling ca-
pacitance calculation methods, and Figure A10 depicts the
&-net model loss using each of the coupling capacitance
calculation methods.

In the average reward plot, we see the intermediate coupling
capacitance calculations enable the agent to earn higher
rewards, and produce better routes overall. This is further
con�rmed by consistently lower loss values for the respective
DQN model, and by the actual routes the agent generates
using each of the coupling capacitance calculation methods.

Figure 10 depicts the routes created by the RL agent when
coupling capacitance is calculated just once at the end of
each episode. In this scenario, the agent only successfully
places 3 out of the 4 routes, and the routes do not minimize
the coupling capacitance.

Figure 11 depicts the routes created by the RL agent when
the intermediate coupling capacitance is calculated at each
timestep. In this scenario, the agent only successfully com-
pletes all 4 routes, and most of the routes are optimized for
lower coupling capacitance.

Figure 11. The routes (shown in red) placed by the RL agent
when the intermediate coupling capacitance is calculated at
each timestep.

Figure 12. The StrongARM comparator schematic [3].

Clearly, given both the average reward earned by the agent,
and the physical placement of wires generated by the RL
agent, we conclude that calculating the intermediate cou-
pling capacitance ismore e�ective.Thus, this is themethod
we used for all experiments described in this section.

4.5 StrongARM Comparator Case Study
Finally, we chose to test the performance of our RL agent on
a StrongARM comparator, a circuit used commonly in analog
to digital converters (ADCs) to compare two input voltages
and determine which is larger. Comparators are designed for
good noise robustness to distinguish between close analog
voltages. Therefore, minimizing noise coupling from digital
signals is important for these circuits.

4.5.1 StrongARM Comparator Schematic and Layout.
The StrongARM comparator circuit schematic is shown in
Figure 12.

7

Figure 13. The StrongARM comparator layout with key
signals labeled in red.

An example of a StrongARM layout (performed manually by
Aviral Pandey in Professor Rikky Muller’s research group
at UC Berkeley for a research tapeout) is shown in Figure
13. As seen in the layout, the input signals are kept far away
from the rail-to-rail switching clock signal.

We used this human-generated layout as a baseline for how
a human expert would go about routing these signals. How-
ever, the routing for the output signals and the input signals
here is fairly trivial.

4.5.2 Modi�ed StrongARM Layout for Experiment.
To make this problem more challenging and feasible for the
RL agent, we altered this layout into theModi�ed StrongARM
Layout as shown in Figure 14. The grid occupies 3 metal
layers in the I axis. The connections from the input and
output transistors are abstracted away into starts S1 and
S2 and targets T1 and T2 (depicted as blue-colored dots).
The teal-colored regions represent transistors connecting
to the input, output, and clock signals, and they occupy all
three metal layers in the I axis. The yellow-colored region
in the middle represents the U-shaped wire for the clock
signal. For the purpose of this modi�ed experiment, we added
the U-shape extension to mimic what the shape would be
like if the clock wire were to include vias coming down
from a higher metal layer. For this circuit, the RL agent
needs to successfully route from S1 to T1 and S2 to T2 while
maximizing the reward function.

4.5.3 Baseline — Lee Algorithm.
To benchmark the performance of our RL-based routing
agent for the Modi�ed StrongARM Layout, we �rst examine
the performance of the Lee algorithm [5], an established rout-
ing algorithm that does not account for noise coupling. The
Lee algorithm operates in two stages: Filling and Retracing,
as shown in Figure 15.

The start and target locations are marked on the grid in
Figure 15 as S and T respectively. During the �lling stage,

Figure 14. The Modi�ed StrongARM Layout with starts and
targets labeled as S1 and S2, T1 and T2.

Figure 15. A visualization of the Lee Algorithm [5].

a breadth-�rst-search (BFS) style “wave propagation” ap-
proach is used to �nd the Manhattan distances from S to
each point on the grid until the target is reached. Then dur-
ing the retracing stage, the algorithm starts at T and retraces
the path to S by choosing the next closest point to the start
at each step.

The Lee algorithm su�ers from a large time and space com-
plexity of O("#) for a grid of size " ⇥ # . Nevertheless,
we use the Lee algorithm as a baseline because it is guaran-
teed to �nd the shortest route from S to T and is completely
agnostic of any coupling or interference from adjacent wires.

In our adaptation of the Lee algorithm, we extend it to 3D
(allowing the algorithm to take vias andmove from onemetal
layer to another) and also account for the “out-of-bounds”
regions where it cannot place routes (because of pre-de�ned
block placements and wires that have already been routed).

The results of running the Lee algorithm on the Modi�ed
StrongARM Layout are shown in Figure 16. The algorithm
begins at S1, predictably routing around the transistor region
in the middle to reach T1. For S2, the algorithm decides to
traverse to the clock region; then it takes a via up to the
next metal layer to cross the clock region before it takes a
via back down to reach T2. The route on the upper metal
layer is marked as a dashed red line, rather than a solid red

8

Figure 16. The routes generated by the Lee algorithm for
the Modi�ed StrongARM Layout.

Figure 17. The starting state of the Modi�ed StrongARM
Layout circuit with coplanar starts and targets. Starting po-
sitions are labeled with a S and target positions are labeled
with a T.

line. This S2 ! T2 route is indeed the shortest route from a
Manhattan distance perspective, although it clearly su�ers
from a large coupling capacitance when traveling directly
over the clock signal route.

As a preliminary baseline, the routes generated using the
Lee algorithm prove to be useful in analyzing performance
of our RL agent’s performance on real-world circuit designs.

4.5.4 RLAgent PerformancewithCoplanar Starts and
Targets.
Figure 17 depicts the initial state of the Modi�ed StrongARM
Layout circuit with coplanar starts and targets.

After training the RL agent on this circuit, we plot the average
reward earned by the agent in each episode in Figure A11.
We also plot the &-net model loss throughout the training
process in Figure A12. Finally, we perform an evaluation
rollout to visualize the routes drawn by the agent, depicted
in Figure 18:

Figure 18. The �nal state of theModi�ed StrongARM Layout
circuit with coplanar starts and targets. Routes (shown in
red) are successfully drawn for all pairs of starts and targets.

The routes drawn by the RL agent successfully connect the
respective start and target pairs, and are optimally drawn
because they are far from the digital wires (shown in neon
green), while also optimizing for the wire length of each
route and the total number of vias taken. Clearly, this result is
much better than the routing generated by the Lee algorithm,
since the wires placed by the RL agent have signi�cantly
lower coupling capacitance with the clock wire.

4.5.5 RLAgent PerformancewithNon-coplanar Starts
and Targets.
We also changed the Modi�ed StrongARM Layout by moving
the target coordinates up one metal layer, so that the agent
is forced to take a via in each route. This would allow us
to understand where the agent decides to take a via if it is
necessary to reach the target position. Figure 19 depicts the
initial state of the Modi�ed StrongARM Layout circuit with
non-coplanar starts and targets.

After training the RL agent on this circuit, we plot the average
reward earned by the agent in each episode in Figure A13.
We also plot the &-net model loss throughout the training
process in Figure A14. Finally, we perform an evaluation
rollout to visualize the routes drawn by the agent, depicted
in Figure 20.

The routes drawn by the RL agent successfully connect the
respective start and target pairs, and are all optimally drawn
because they are far from the digital wires (shown in neon
green), while also optimizing for the wire length of each
route.

Because we did not extend our intermediate coupling ca-
pacitance calculation to 3D, the RL agent ends up drawing
a route directly above the clock wire. In reality, this route
would su�er from the undesired coupling capacitance in the
I axis to the clock signal wire. To solve this, we propose to

9

Figure 19. The starting state of the Modi�ed StrongARM
Layout circuit with non-coplanar starts and targets. Starting
positions are labeled with a S and target positions are labeled
with a T.

Figure 20. The �nal state of theModi�ed StrongARM Layout
circuit with non-coplanar starts and targets. Routes (shown
in red) are successfully drawn for all pairs of starts and
targets. Dotted lines correspond to wires on the topmost
metal layer (which also contains the target positions).

expand our intermediate coupling capacitance calculation
to 3D and also choose U1 < U2 to account for di�erent wire
pitches and dielectrics between successive metal layers.

4.6 Runtime and Performance Analysis
The RL agent can be trained to draw routes for simple circuits
in as little as a few hours running only on CPU and a couple
million environment steps during the training process.

Table 1 lists the total time (in hours) and number of environ-
ment steps taken to train the RL agent for di�erent circuits,
and its performance in each environment. We calculate the
score by dividing the average reward by the number of routes
in the circuit.

Env Name Steps Time Score
Grid2D 1M 0h 5m 127

Expanded Grid2D 2.5M 0h 26m 56
Grid3D Coplanar 5M 2h 16m 68

Grid3D Non-coplanar 5M 1h 59m 9
StrongARM Coplanar 15M 4h 27m 20

StrongARM Non-coplanar 15M 4h 39m 20

Table 1. The training time and number of environment steps
taken, along with agent performance for a variety of circuits.
The score is calculated by dividing the average reward by
the number of routes in the circuit.

5 Conclusion
5.1 Contributions
In summary, we have developed an RL-based framework to
generate analog routes that minimize parasitic noise cou-
pling to nearby digital signals. This noise coupling can signif-
icantly degrade the performance of mixed-signal circuits like
ADCs and DACs, and thus the generation of optimized routes
is an important step in mixed-signal design automation.

Based on an action space of possible directions to route and
an observation space of existing analog wires, digital wires,
and pre-placed blocks, the RL agent optimally chooses a
direction to move in for each step of the route. We also devel-
oped two custom coupling capacitance calculation methods
to evaluate the severity of noise coupling, and we incorpo-
rated this capacitance as a penalty term into our reward
function. We tuned the hyperparameters of the reward func-
tion to yield a balanced tradeo� between minimal wirelength
and minimal noise coupling to achieve best performance.

Finally, we demonstrate the e�cacy of our RL framework
on a variety of circuit topologies, from simple 2D and 3D
examples to a modi�ed layout of a commonly used circuit —
the StrongARM comparator.

5.2 Analysis
5.2.1 RL Agent vs. Human Experts.
For real-world circuit routing, most of the times analog de-
sign engineers will manually place blocks, manually draw
routes, and then iteratively run simulations to evaluate their
layout and make tweaks to optimize the performance. This
process is very slow and requires the involvement of a human
expert (thus making it impossible to simulate). As a result,
it is di�cult to compare the performance of the RL agent
against that of an expert engineer, but we believe that the RL
agent produces routes similar to ones a human expert would
draw (considering the pre-placement of circuit blocks on the
layout). The RL agent demonstrates an ability to produce
optimized routes much faster than human engineers, which

10

is a useful step in the machine-learning based automation of
circuit layout.

5.2.2 Relevance to Optimal Placement, Bootstrapping.
Our RL agent framework is designed to optimize routing for
a given placement of blocks and routes. However, this work
also provides useful insights into the placement of circuit
blocks before routing is performed. Speci�cally, our RL agent
can be used to evaluate the “quality” of a given placement,
by evaluating (or approximating) the total routing cost of all
wires in the circuit, given the initial placement. Furthermore,
this can be incorporated into the cost function of a block
placement engine, allowing it to generate better placements
that reduce the total routing cost.

This can also be extended further with bootstrapping to
generate random coarse block placements, make �ne adjust-
ments in the block positions, and prune the placements that
will not yield satisfactory routing results. With this method,
block placement engines will be able to explore the design
space more e�ciently, and also output better �nal layouts.
This would further reduce the gap between the RL agent
and an expert human designer because our framework can
“sweep” through placement options and predict the corre-
sponding routing cost to optimally select both placement
and routing for AMS designs.

5.3 Future Work
This is just the beginning of circuit routing automation, and
there is still a lot of work to be done in this space. Below, we
detail scope for improvement within our work and further
extensions of this project.

5.3.1 Training with Pre-Trained Agents.
Ideally, we think it would be useful to evaluate the ability
for a pre-trained DQN model to be �ne-tuned for a speci�c
new circuit problem, and evaluate whether it can produce
optimized routes with minimal �ne-tuning.

This would require a more generic DQN model architecture,
which is agnostic of the circuit layout dimensions and in-
cludes modules to extract various features from the layout
that are relevant to the current route being drawn. This could
be done using convolutional neural networks (CNNs) with
varying kernel sizes, among other types of models.

5.3.2 Testing Generalizability of RL Agent.
Furthermore, we would like to benchmark the generalizabil-
ity of the RL agent, and understand its single-shot perfor-
mance on new circuits outside of the training distribution.
Of course, to do this, the DQN model must be trained on
a larger range of test circuit problems, which is certainly a
challenge for research in this domain.

5.3.3 Fine-tuning RL Agent with Human Feedback.
Another way we think the RL agent could be improved is
using reinforcement learning with human feedback (RLHF).

With RLHF, the reward function is a combination of the
traditional reward function, along with a human-provided
feedback (a score that rates the quality of the agent’s output).
RLHF would allow for a more �exible reward function that
can better represent the “intuitive” and “subjective” di�er-
ences in routes (e.g. routes that are clean, evenly spaced,
symmetric, etc.). This would allow the RL agent to learn to
optimize for a reward function that is more e�ective than a
manually designed reward function.

5.3.4 Automated Hyperparameter Tuning.
To further optimize the reward function we manually de-
signed, we propose the use of automated hyperparameter
tuning, in which a set of training processes can be run in par-
allel, with di�erent learning parameters and reward function
weights. Although we manually optimized these parameters,
we were not able to extensively sweep over wide ranges
of values, and this is something that could improve the RL
agent’s performance further. It would also be e�ective to
utilize cloud compute servers to speed up and parallelize the
training process.

5.3.5 Testing with More Real-World Circuits.
To test the scalability of our RL framework, we propose
testing on a wider collection of circuits — both in terms of
functional diversity and layout size. We believe functional
diversity is important because our framework may work
better on certain types of circuits that lend themselves to
routing-based optimizations. For example, clocked circuits
that are susceptible to interference from the hard switching
clock signals may prove to be good candidates. At the same
time, we would like to test our framework on larger layouts
to understand how successfully our agent can explore larger
observation spaces and reach the desired targets.

6 Attributions
This project was a group project, between students Avikam
Chauhan and Ashwin Rammohan. We contributed equally
to the programming work and writing the report as well as
discussions about reward function tweaks and coupling ca-
pacitance calculation methods. Avikam led the development
of the RL agent software and con�gurable circuit description
framework, while Ashwin led the design and development
of various test circuit problems and the implementation of
the Lee routing algorithm.

Acknowledgments
We would like to thank the UC Berkeley CS 294-256 course
sta� (Professor John Wawrzynek and Josh Kang) and the UC
Berkeley CS 285 course sta� (Professor Sergey Levine, Kyle
Stachowicz, Vivek Myers, Joey Hong, and Kevin Black) for
their feedback on this work.

11

References
[1] Hao Chen, Kai-Chieh Hsu, Walker J. Turner, Po-Hsuan Wei, Keren

Zhu, David Z. Pan, and Haoxing Ren. 2023. Reinforcement Learning
Guided Detailed Routing for Custom Circuits. In Proceedings of the 2023
International Symposium on Physical Design.

[2] Mark Po-Hung Lin, Po-Hsun Chang, Shuenn-Yuh Lee, and Helmut E.
Graeb. 2016. DeMixGen: Deterministic Mixed-Signal Layout Generation
With Separated Analog and Digital Signal Paths. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 35, 8 (2016),
1229–1242. h�ps://doi.org/10.1109/TCAD.2015.2501295

[3] Sreenivasulu Polineni, M. S. Bhat, and S. Rekha. 2020. A Switched
Capacitor-Based SAR ADC Employing a Passive Reference Charge
Sharing and Charge Accumulation Technique. Circuits, Systems, and
Signal Processing 39, 11 (2020), 5352–5370. h�ps://doi.org/10.1007/
s00034-020-01437-3

[4] F. Schembari, G. Bellotti, and C. Fiorini. 2016. A 12-bit SAR ADC in-
tegrated on a multichannel silicon drift detector readout IC. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 824 (2016), 353–355.
h�ps://doi.org/10.1016/j.nima.2015.08.036 Frontier Detectors for Fron-
tier Physics: Proceedings of the 13th Pisa Meeting on Advanced Detec-
tors.

[5] Hai Zhou. 2014. Detailed routing: shortest path and maze search. h�p:
//users.eecs.northwestern.edu/~haizhou/357/lec6.pdf

[6] Keren Zhu. 2023. Fully-automated Layout Synthesis for Analog and
Mixed-Signal Integrated Circuits. Ph. D. Dissertation. University of Texas
at Austin, Austin, TX.

A Training Curves

Figure A1. The average reward gained by the RL agent in
each episode throughout the training process for the Simple
2D Grid circuit.

Figure A2. The &-net model loss throughout the training
process for the Simple 2D Grid circuit.

Figure A3. The average reward gained by the RL agent in
each episode throughout the training process for the Ex-
panded 2D Grid circuit.

12

https://doi.org/10.1109/TCAD.2015.2501295
https://doi.org/10.1007/s00034-020-01437-3
https://doi.org/10.1007/s00034-020-01437-3
https://doi.org/10.1016/j.nima.2015.08.036
http://users.eecs.northwestern.edu/~haizhou/357/lec6.pdf
http://users.eecs.northwestern.edu/~haizhou/357/lec6.pdf

Figure A4. The &-net model loss throughout the training
process for the Expanded 2D Grid circuit.

Figure A5. The average reward gained by the RL agent in
each episode throughout the training process for the Ex-
panded 3D Grid circuit with coplanar starts and targets.

Figure A6. The &-net model loss throughout the training
process for the Expanded 3D Grid circuit with coplanar starts
and targets.

Figure A7. The average reward gained by the RL agent in
each episode throughout the training process for the Ex-
panded 3D Grid circuit with non-coplanar starts and targets.

Figure A8. The &-net model loss throughout the training
process for the Expanded 3D Grid circuit with non-coplanar
starts and targets.

Figure A9. The average reward gained by the RL agent in
each rollout throughout the training process. The red line
corresponds to the intermediate coupling capacitance calcu-
lations, and the blue line corresponds to the total coupling
capacitance calculations.

13

Figure A10. The &-net model loss throughout the training
process. The red line corresponds to the intermediate cou-
pling capacitance calculations, and the blue line corresponds
to the total coupling capacitance calculations.

Figure A11. The average reward gained by the RL agent in
each episode throughout the training process for theModi�ed
StrongARM Layout circuit with coplanar starts and targets.

Figure A12. The &-net model loss throughout the train-
ing process for the Modi�ed StrongARM Layout circuit with
coplanar starts and targets.

Figure A13. The average reward gained by the RL agent in
each episode throughout the training process for the Modi-
�ed StrongARM Layout circuit with non-coplanar starts and
targets.

Figure A14. The &-net model loss throughout the training
process for theModi�ed StrongARM Layout circuit with non-
coplanar starts and targets.

14

	Abstract
	1 Introduction
	1.1 The Motivation for Machine Learning
	1.2 The Motivation for Reinforcement Learning

	2 Related Work
	3 Methodology
	3.1 Deep Q Network (DQN) Algorithm
	3.2 Markov Decision Process Formulation
	3.3 Coupling Capacitance Calculations
	3.4 Model Architecture and Training

	4 Experiments and Results
	4.1 Simple 2D Grid Experiment
	4.2 Expanded 2D Grid Experiment
	4.3 Expanded 3D Grid Experiment
	4.4 Evaluating Intermediate Coupling Capacitance vs. Total Coupling Capacitance Calculation
	4.5 StrongARM Comparator Case Study
	4.6 Runtime and Performance Analysis

	5 Conclusion
	5.1 Contributions
	5.2 Analysis
	5.3 Future Work

	6 Attributions
	Acknowledgments
	References
	A Training Curves

